GossipGraD: Scalable Deep Learning using Gossip Communication based Asynchronous Gradient Descent
نویسندگان
چکیده
In this paper, we present GossipGraD – a gossip communication protocol based Stochastic Gradient Descent (SGD) algorithm for scaling Deep Learning (DL) algorithms on large-scale systems. The salient features of GossipGraD are: 1) reduction in overall communication complexity from Θ(log(p)) for p compute nodes in well-studied SGD to O(1), 2) model diffusion such that compute nodes exchange their updates (gradients) indirectly after every log(p) steps, 3) rotation of communication partners for facilitating direct diffusion of gradients, 4) asynchronous distributed shuffle of samples during the feedforward phase in SGD to prevent over-fitting, 5) asynchronous communication of gradients for further reducing the communication cost of SGD and GossipGraD. We implement GossipGraD for GPU and CPU clusters and use NVIDIA GPUs (Pascal P100) connected with InfiniBand, and Intel Knights Landing (KNL) connected with Aries network. We evaluate GossipGraD using well-studied dataset ImageNet-1K (≈ 250GB), and widely studied neural network topologies such as GoogLeNet and ResNet50 (current winner of ImageNet Large Scale Visualization Research Challenge (ILSVRC)). Our performance evaluation using both KNL and Pascal GPUs indicates that GossipGraD can achieve perfect efficiency for these datasets and their associated neural network topologies. Specifically, for ResNet50, GossipGraD is able to achieve ≈ 100% compute efficiency using 128 NVIDIA Pascal P100 GPUs – while matching the top-1 classification accuracy published in literature.
منابع مشابه
GoSGD: Distributed Optimization for Deep Learning with Gossip Exchange
We address the issue of speeding up the training of convolutional neural networks by studying a distributed method adapted to stochastic gradient descent. Our parallel optimization setup uses several threads, each applying individual gradient descents on a local variable. We propose a new way of sharing information between different threads based on gossip algorithms that show good consensus co...
متن کاملGossip training for deep learning
We address the issue of speeding up the training of convolutional networks. Here we study a distributed method adapted to stochastic gradient descent (SGD). The parallel optimization setup uses several threads, each applying individual gradient descents on a local variable. We propose a new way to share information between different threads inspired by gossip algorithms and showing good consens...
متن کاملLeveraging Asynchronicity in Gradient Descent for Scalable Deep Learning
In this paper, we present multiple approaches for improving the performance of gradient descent when utilizing mutiple compute resources. The proposed approaches span a solution space ranging from equivalence to running on a single compute device to delaying gradient updates a fixed number of times. We present a new approach, asynchronous layer-wise gradient descent that maximizes overlap of la...
متن کاملHow to scale distributed deep learning?
Training time on large datasets for deep neural networks is the principal workflow bottleneck in a number of important applications of deep learning, such as object classification and detection in automatic driver assistance systems (ADAS). To minimize training time, the training of a deep neural network must be scaled beyond a single machine to as many machines as possible by distributing the ...
متن کاملBalancing the Communication Load of Asynchronously Parallelized Machine Learning Algorithms
Stochastic Gradient Descent (SGD) is the standard numerical method used to solve the core optimization problem for the vast majority of machine learning (ML) algorithms. In the context of large scale learning, as utilized by many Big Data applications, efficient parallelization of SGD is in the focus of active research. Recently, we were able to show that the asynchronous communication paradigm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018